The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant.

نویسندگان

  • C De Virgilio
  • T Hottiger
  • J Dominguez
  • T Boller
  • A Wiemken
چکیده

In the yeast Saccharomyces cerevisiae, accumulation of the non-reducing disaccharide trehalose is triggered by various stimuli that activate the heat-schock response. Several studies have shown a close correlation between trehalose levels and tolerance to heat stress, suggesting that trehalose may be a protectant which contributes to thermotolerance. In this study, we have examined mutants defective in genes coding for key enzymes involved in trehalose metabolism with respect to the heat-induced and stationary-phase-induced accumulation of trehalose and the acquisition of thermotolerance. Inactivation of either TPS1 or TPS2, encoding subunits of the trehalose-6-phosphate synthase/phosphatase complex, caused an inability to accumulate trehalose upon a mild heat-shock or upon initiation of the stationary phase and significantly reduced the levels of heat-induced and stationary-phase-induced thermotolerance. Deletion of NTH1, the gene coding for the neutral trehalase, resulted in a defect in trehalose mobilization during recovery from a heat shock which was paralleled by an abnormally slow decrease of thermotolerance. Our results provide strong genetic evidence that heat-induced synthesis of trehalose is an important factor for thermotolerance induction. In an accompanying study [Hottiger, T., De Virgilio, C., Hall, M. N., Boller, T. & Wiemken, A. (1993) Eur. J. Biochem. 219, 187-193], we present evidence that the function of heat-induced trehalose accumulation may be to increase the thermal stability of proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe.

Yeast cells show an adaptive response to a mild heat shock, resulting in thermotolerance acquisition. This is accompanied by induction of heat-shock protein (hsp) synthesis and rapid accumulation of trehalose. Genetic approaches to determine the specific role of trehalose in heat-induced thermotolerance in Saccharomyces cerevisiae have been hampered by the finding that deletion of TPS1, the gen...

متن کامل

The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro.

In baker's yeast (Saccharomyces cerevisiae), accumulation of the non-reducing disaccharide, trehalose, is triggered by stimuli that activate the heat-shock response. Previously, trehalose levels have been shown to be closely correlated with thermotolerance, suggesting a protective function of this substance. Genetic evidence in support of this view is presented in an accompanying paper [De Virg...

متن کامل

Heat shock induces enzymes of trehalose metabolism, trehalose accumulation, and thermotolerance in Schizosaccharomyces pombe, even in the presence of cycloheximide.

Exponentially growing cells of the fission yeast, Schizosaccharomyces pombe, contained virtually no trehalose at 27 degrees C but rapidly accumulated large quantities during heat shock at 40 degrees C. Activities of trehalose-6-phosphate synthase and trehalase also increased upon heat shock. Thermotolerance of the cells, measured as survival at 52 degrees C, increased in parallel to trehalose a...

متن کامل

The thermophilic yeast Hansenula polymorpha does not require trehalose synthesis for growth at high temperatures but does for normal acquisition of thermotolerance.

The TPS1 gene from Hansenula polymorpha, which encodes trehalose-6-phosphate (Tre6P) synthase, has been isolated and characterized. The deletion of TPS1 rendered H. polymorpha cells incapable of trehalose synthesis under conditions where wild-type cells normally accumulate high levels of trehalose. Interestingly, the loss of Tre6P synthase did not cause any obvious growth defects on a glucose-c...

متن کامل

Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp 104 and in the absence of protein synthesis.

Acquisition of thermotolerance in response to a preconditioning heat treatment at 40 degrees C was studied in mutants of the yeast Saccharomyces cerevisiae lacking a specific heat shock protein or the ability to synthesize proteins at 40 degrees C. A mutant carrying a deletion of heat shock protein hsp 104 and the corresponding wildtype strain were both highly sensitive to heat stress at 50.4 d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European journal of biochemistry

دوره 219 1-2  شماره 

صفحات  -

تاریخ انتشار 1994